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The applicability of the new iterative numerical algorithm of the pulse-spectrum technique 
(PST) to solve the inverse problem in remote sensing of the thermal conductivity of a 
nonhomogeneous material is demonstrated for the one-dimensional case. Numerical 
simulations arc carried out to test the feasibility and to study the general characteristics of 
this technique without the real measurement data. It is found that PST does give excellent 
results and is more robust in solving the inverse problem of the diffusion equation than that of 
the wave equation. Various possible extensions of PST for solving a more general class of 
inverse problems of diffusion equations are pointed out. 

INTRODUCTION 

Thermal conductivity of a nonhomogeneous material can be inferred numerically 
from a small number of experimental data obtained through remote sensing 
techniques on the boundary as opposed to in situ techniques in the interior. From the 
experimentalist’s point of view, for the ease of performing a reliable experiment, the 
measured physical quantity should be as fundamental as possible; in this case, the 
termperature measurement is preferred to the heat flux measurement. Often this type 
of remote sensing problems can be formulated as ill-posed inverse problems of partial 
differential equations in mathematical analysis, and usually the solution of an inverse 
problem is not unique and does not depend continuously on the given data. 

The inverse problems for linear and nonlinear diffusion equations have been 
studied by many researchers in the past and the present. In particular, the questions 
of existence and uniqueness, the numerical and the analytic methods in constructing 
approximate solutions have been treated by Jones [ 11, Douglas and Jones [2], 
Cannon [3,4], and Cannon and DuChateau [5-81. However, the techniques they 
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employ require the knowledge of the heat flux at the boundary which cannot be easily 
measured. Moreover, these techniques have not been fully developed for computation 
and cannot be readily extended to solve three-dimensional inverse problems with 
complex geometry. In this paper we introduce the “pulse-spectrum technique” 
(PST)--an iterative computational algorithm-for determining the unknown thermal 
conductivity of a nonhomogeneous material from the surface measurements of the 
temperature and the temperature gradient (instead of heat flux). It is more suitable for 
numerical computation and can be readily extended to solve three-dimensional 
inverse problems. The basic idea of the pulse-spectrum technique is that data are 
measured in the time-domain with compact support (pulse-shaped functions) and the 
synthesis of the unknown coefficient is carried out numerically in the complex 
frequency-domain by an iterative algorithm. 

The PST was first introduced by Tsien and Chen [9] for solving an idealized 
velocity inverse problem in fluid dynamics (an inverse problem for the linear wave 
equation); then it was further developed by Chen and Tsien [lo] to have the 
capability of handling the noise, poorly distributed and inadequately measured data. 
Later it was used to solve an inverse problem in electromagnetic wave propagation by 
Tsien and Chen [ 111, and recently it has been extended successfully to solve inverse 
problems of a nonlinear acouctic wave equation by Hatcher and Chen [ 121. 
Moreover, the discretized version of this iterative algorithm under idealized 
conditions has been proved to converge quadratically [ 131 which is quite efficient 
from the numerical computation point of view. 

The main purpose of the present paper is to demonstrate the applicability of the 
new numerical algorithm of PST to remote sensing of the thermal conductivity of a 
material. For simplicity, the formulation of the inverse problem of a linear one- 
dimensional diffusion equation is presented, and the basic numerical algorithm is 
given in the next section. Then numerical simulations are carried out to test the 
feasibility and to study the intrinsic characteristics of this numerical algorithm 
without the real measurement data. Finally, in the last section a comprehensive 
discussion of the numerical results and their implication in the actual implementation 
of this computational algorithm are given; moreover, the practical ways of 
generalization of PST to solve cases involving simultaneous determination of several 
unknown coefficients, nonlinear diffusion equations, and three-dimensional problems 
are pointed out. 

NUMERICAL ALGORITHM (PULSE-SPECTRUM TECHNIQUE) 

Consider the following initial-boundary-value problem of a one-dimensional linear 
diffusion equation: 

a/ax * [k(x) au/ax] - pc au/at = 0, O<x<l, O<t<co, 

u(x, 0) = 0, @, t) = f(r), u(L t) = g(t), (1) 
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and 

where u(x, t) is the temperature, k(x) is the thermal conductivity, p is the constant 
density and c is the constant specific heat. Here the inverse problem is to determine 
k(x) from known p and c and measured f(t), g(t) and h(t), functions of t with 
compact supports (or pulses) and Laplace transformable. 

The pulse-spectrum technique (PST) calls for the Laplace transformation of the 
above linear system (1) so that the entire system is transformed from time-domain to 
the complex frequency-domains; then the corresponding system is 

a/ax . [k(x) h(x, syax] - spcv(x, s) = 0, o<x< 1, 
(2) 40, s> = f(s), v(L s> = g(s), 

and 

&1(0, s)/c?x = h(s). 

Now the inverse problem is to determine k(x) from p, c, f(s), g(s) and h(s). 
The iterative numerical algorithm begins by letting 

V n+l =v,,+~v,,, k,+,=k,+dk,, n = 0, 1, 2, 3 )...) (3) 

where k,,(x) is the initial guess of the unknown coefficient k(x), 1 k, 1 > ldk,, 1 and 
I v,I > I&I,/, and 6k,(O) = 6k,(l) = 0. Upon substituting (3) into (2), neglecting terms 
of O{(&,)*}, 0{(6k,)‘} and higher, and assuming that 82k,/dx2 and higher-order 
derivatives are small, one obtains a system for v, 

a/ax . [k,(x) c%,/cYx] - spcv, = 0, O<x<l, 

and vn(l, s> = iids> 

and a system for &I,, 

a/ax . [k,(x)i%v,/~x] - spc &I, = -6k,J2v,/ax2 - (c%k,/~x)(av,/i?x), 

&,(O, s) = 6v,(l, s) = 0. 
(5) 

By using the method of Green’s function, the differential equation (5) can be 
change to a Fredholm integral equation of the first kind which relates dk,(x) to 
f3vn(x, s): 

i 

’ G,(x, x’, s) . a/ax’ . [dk,(x’) c?v,@x’] dx’ = -6v,(x, s), 
0 

(6) 
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i?G,,(x, x’, s)/dx . a/ax’ - [dk,(x’) &,/ax’] dx’ = -8&1,(x, s)/ax, (7) 

where G,(x, x’, s) is the Green’s function of the differential operator in (5) and it can 
be computed numerically in general. 

For the purpose of accelerating the rate of convergence, the right hand side of (7) 
can be replaced by &I”(x, S)/C?X - &(x, s)/ax. After setting x = 0 and a simple 
integration by parts, one obtains the following Fredholm integral equation of the first 
kind for C.%,(X): 

I 
1 

d*G,(O, x’, 3)/8x 3x + ~Y,,(x’, s)/ax’ . 6k,(x’) dx’ = h(s) - &1,(0, s)/dx, (8) 
0 

whereas the same procedure applied to (6) will only lead to the trivial identity, zero 
equal to zero. Moreover, for the one-dimensional case here the derivative of Green’s 
function in (8),can be derived exactly as 

G,,(x, x’, s) = --M,(x, s) N,(x’, s), 0 <X(X’, 

= -M,(x’, s> N,(x, s), x’<x< 1, 

where M,(x, s) and N,(x, s) are two linearly independent solutions of the 
homogeneous form of (5) and satisfy the boundary conditions, 

M,(O, s) = 0, dM,(O, s)/dx = k, ‘(0) f-‘(s), 

N,(O, s) = f(s), N,( 1, s) = 0. 

Hence aG,(O, x’, S)/C~X = -k;‘(O) f-‘(s) N,(x’, s) = -k;‘(O) f-‘(s) v^,(x’, s), where 
fi,(x, s) is the part of u,(x, s) satisfying (4) with g(s) = 0. For the purpose of 
computational efficiency, Eq. (8) can be further reduced to 

I ’ [c%,(x’, s)/ax’] [i%,(x’, s)/ax’] 6k,(x’) dx’ = k,(O) f(s)[av,(O, s)/ax - h(s)]. (9) 
0 

Equations (3), (4) and (9) form the basic structure for each iteration in the 
iterative numerical algorithm of PST. First, a numerical integration subroutine is used 
to evaluate the Laplace transforms f(s), g(s) and h(s) at s = si, i = 1, 2,3,..., I. Then 
these discrete values will be used to solve Eqs. (4) and (9) numerically. The two-point 
boundary-value problem (4) can be solved numerically by simply using the second- 
order finite difference method [ 141. To solve the ill-posed Fredholm integral equation 
of the first kind (9), here we prefer to use the Tikhonov’s regularization method with 
second-order stabilizers [ 151. The essence of the first cycle of iteration is given in the 
following diagram and the procedure for other cycles is exactly the same: 
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I Initial guess: k,(x). 

By using a finite difference method, one solves (4) 
for different values of s = s,., i = 1,2,3 ,..., Z, to 
obtain {0,(x, si)}, i = 1, 2, 3 ,..., I. 

{80,(x, s,)/c?x}, i = 1, 2, 3 ,..., I, are computed by 
using finite difference approximation. 

By using the Tikhonov’s regularization method, one 
solves the discrete version of (9) with discrete 
values of s, {si}, i = 1, 2, 3 ,..., I, to obtain &,(x). 

1 
_I 

From (3), one obtains k,(x). 

It is important to notice that each cycle of iteration consists basically of first solving 
the direct two-point boundary-value problem (4) Z times and then solving the 
Fredholm integral equation of the first kind (9) once. 

NUMERICAL SIMULATION 

In order to test the feasibility and to study the general characteristics of the new 
PST computational algorithm without the real measurement data, the following 
numerical simulation procedure is carried out: 

First, one chooses a k*(x) which is supposed to represent the correct thermal 
conductivity of an object and also the boundary conditions f(t) and g(t) which are 
supposed to represent the measured data partially. Their Laplace transforms f(s) and 
g(s) are numerically computed for a chosen discrete set of s = si, i = l? 2,3,..., I. 
Then the two-point boundary-value problems (2) (omitting the third boundary 
condition) with the chosen k*(x), f(si) and g(si) are solved by using the finite 
difference method; thus one generates the rest of the supposedly measured data h(si), 
i = 1, 2, 3 ,..., Z, by a simple finite difference approximation. 
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FIG. 1. Comparison of the calculated k,(x) (,,.) and the exact k*(x) (-), with the initial guess 

k,,(x) (---I. 

FIG. 2. Comparison of the calculated k,(x) (...) and the exact k*(x) (-), with the initial guess 
k”(S) (---). 

FIG. 3. Comparison of the calculated k,4(~) (...) and the exact k*(x) (-), with the initial guess 
k”(X) (---). 
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FIG. 5. Comparison of the calculated k,,(x) (...) and the exact k*(x) (-), with the initial guess 
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FIG. 6. Comparison of the calculated k,,(x) (...) and the exact k*(x) (--), with the initial guess 
k,(x) (---). 
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FIG. 7. Comparison of the calculated k,,(x) (...) and the exact k*(x) (-), with the initial guess 
k,(x) (---). 
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FIG. 8. Comparison of the calculated k,,(x) (. .) and the exact k*(x) (-), with the initial guess 
k”(X) (---). 
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FIG. 9. Comparison of the calculated k,,(x) (...) and the exact k*(x) (-), with the initial guess 
h,(x) (---I 
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TABLE I 

Fig. 

1 2 3 4 5 6 I 8 9 

Ill 6.928 2.236 3.830 9.00 1.844 1.844 0.490 0.510 1.114 

IN 0.355 0.138 0.291 0.361 0.187 0.122 0.056 0.058 0.079 
N 5 I 14 10 10 10 10 10 10 

Next, k,(x) is assumed. Hence upon solving (3), (4) and (9) numerically, k,(x) is 
obtained. Then in a similar manner k,(x) is obtained. One continues this procedure 
until finally a numerical limit kJx) is reached. Other than the truncation, round-off, 
numerical integration and the finite difference approximation errors in both 
generating the numerical data and computing &(x), any norm Ilk*(x) - kN(x)ll can 
be used as a criterion for evaluating the performance of the computational algorithm 
of PST. 

The numerical simulation here is carried out for a general class of k*(x) and k,(x), 
e.g., constants, pieceqise-linear continuous functions and oscillatory functions. In 
fact, the interchange of the functions for k*(x) and k,(x) results in no significant 
differences in k,,,(x)‘s except in some of the fine details. Hence for avoiding the 
expense in generating numerical data, a single k*(x) is used for most of the numerical 
examples here; instead, various different ko(x)‘s are used for each numerical example. 
Furthermore, for avoiding the expense in performing numerical Laplace transfor- 
mation, f(t) = H(t), the Heaviside unit step function, and g(t) = 0 are chosen such 
that f(s) = s-i and g(s) = 0. Here si = i, i= 1,2, 3 ,..., 11, are used in our 
computation. The trapezoidal rule is used to discretize the integrals. 

The numerical results are plotted in Figs. 1 - 9. The maximum norms of 
k*(x) - k,,,(x) and k*(x) - k,( x ) f or various cases can be estimated from the graphs 

FIG. 10. I, as a monotonic decreasing function of n shown for the numerical example in Fig. 1. 
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in these figures. The L, norms, I,, = I] k*(x) - k,(x)]],, n = 0, ZV, for various cases are 
tabulated in Table I. I,, as a function of n for the numerical example in Fig. 1 is 
shown in Fig. 10. 

DISCUSSION 

The numerical results in Figs. l-9 have demonstrated that the PST iterative 
numerical algorithm does give excellent results in inferring the thermal conductivity 
from a set of measured data of surface temperature and its gradient for a general 
class of k*(x) and k,(x). Moreover, PST is shown to be more robust in solving the 
inverse problem of the diffusion equation than that of the wave equation [9-l 11, e.g., 
Max., 1 k*(x) - k,(x)]/M ax., /k*(x)] is much larger here than the corresponding ratio 
in the case of the wave equation. This outcome is not surprising at all, because one of 
the key steps responsible for the success of the PST iterative numerical algorithm is 
how well one can evaluate the Fredholm integral equation of the first kind. Here the 
kernel in the Fredholm integral equation of the first kind is a monotonic function 
while the corresponding kernel for the case of the wave equation is an 
oscillatory function; hence the numerical problem here is better conditioned than that 
of the wave equation. Although here all of the examples are solved under the 
assumption that &JO) = Sk,(l) = 0, n = 0, 1,2,3,..., which means the thermal 
conductivity at the boundary surface is a priori known, this assumption is not entirely 
without real justification, for in practice the actual material property at the surface 
can be measured by direct means. 

It is interesting to observe that except in the neighborhood of boundary all of the 
approximate numerical solutions k,,,(x>‘s do inherit the genetic characteristics of the 
initial guesses ko(x)‘s, e.g., if k,(x) is smooth, then k,,,(x) is also smooth; if k,(x) is a 
piecewise-linear continuous function with a corner at x’, then kN(x) also has a corner 
at x’. This simplies that k,,,(x) depends on k,(x), i.e., for different k,,(x)‘s, the PST 
iterative numerical algorithm will lead to slightly different k,Jx)‘s. If the numerical 
algorithm is reasonable robust, then any one of the approximate solutions will be an 
acceptable approximation. This numerical computation phenomenon can be 
attributed to the accumulation of those non-negligible errors in computing each 
iterate. In the case here, most of these computational errors come from the 
regularization procedure in solving the Fredholm integral equation of the first kind. 
Examples and proofs are given by Surmont and Chen [ 161 and Chen and Surmont 
] 171 in the case of solving the Hammerstein integral equation of the first kind by 
using Newton-like iterative algorithms. More abstract results can be found in [ 181. In 
the neighborhoods of the boundary, the constraints &JO) = &,( 1) = 0 are strong 
enough to prevent the above-mentioned inheritance problem. 

The accuracy of the numerical algorithm can be improved greatly if more efforts 
are made in computing each individual step of the numerical algorithm and if larger 
numbers of sts are used and their values are properly chosen according to either the 
minimum error criterion [ 191 or the well-conditioned matrix criterion [20] in solving 



ALGORITHM FOR SENSING OF CONDUCTIVITY 325 

the Fredholm integral equation of the first kind. In the case of the measurement data 
contaminated by instrument noise or other random errors, the PST iterative 
numerical algorithm is still applicable except that the Backus and Gilbert linear 
inversion technique [21-231 will be used to solve the Fredholm integral equation of 
the first kind with erroneous data instead of the Tikhonov’s regularization method as 
for the case of the wave equation [ 10, 111. 

The PST iterative numerical algorithm can be extended to solve three-dimensional 
inverse problems in a straightforward manner, because the finite difference method or 
the finite element method is just as adaptable to solve any three-dimensional 
boundary-value problem with arbitrary finite domain as to solve the one-dimensional 
two-point boundary-value problem, and the Tikhonov’s regularization method is also 
as adaptable to solve the three-dimensional Fredholm integral equation of the first 
kind as to solve the one-dimensional case. However, many practical difficulties do 
exist, e.g., the maximization of the computational efficiency, the minimization of the 
computer core storage, the selection of a minimum amount of data for maximum 
computational accuracy, the accurate computation of the iterative Green’s function, 
etc. 

The PST iterative numerical algorithm also can be generalized to solve the inverse 
problems of special classes of nonlinear diffusion equations as for the case of 
nonlinear wave equations [ 121. Moreover, it can be further extended to the 
simultaneous determination of several unknown coefficients of a diffusion equation. 
The efforts in carrying out the above-mentioned possible generalizations and 
applications are either well under way or just started. The results will be reported in 
the near future. 
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